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Extreme Heat Vulnerability of Subsidized Housing Residents in 
California
C. J. Gabbea and Gregory Pierceb

aDepartment of Environmental Studies and Sciences, Santa Clara University, Santa Clara, CA, USA; bLuskin Center 
for Innovation, Luskin School of Public Affairs, University of California, Los Angeles, CA, USA

ABSTRACT
Extreme heat is the leading weather-related cause of mortality in the 
United States, but there is little evidence about how this climate hazard 
affects residents of different housing types. In this study, we examine 
whether Californians living in subsidized housing are more vulnerable to 
extreme heat than those living in unsubsidized housing. We create a tract- 
level data set combining housing characteristics, downscaled climate 
projections, and an index of adaptive capacity and sensitivity to heat. 
We analyze exposure and vulnerability to heat by housing type and 
location. We find that subsidized housing is disproportionately located 
in the hottest tracts that simultaneously also have the most sensitive 
populations and barriers to adaptation (high-high tracts). Whereas 8% of 
California’s housing units are in high-high tracts, these tracts contain 16% 
of public housing units, 14% of Low-Income Housing Tax Credit units, and 
10% of Section 8 Housing Choice Vouchers. Our findings indicate the need 
for targeted housing and land-use policy interventions to reduce heat 
vulnerability.
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Extreme heat is the largest cause of weather-related death in the United States, and climate change 
will worsen heat-related public health emergencies (National Weather Service, 2018; U.S. EPA, & CDC, 
2016). People who are most sensitive to the effects of heat—including seniors, children, and those 
with preexisting health conditions—and those without access to air conditioning (AC) will face the 
greatest health challenges, making policy support for adaptation measures essential (Hajat & 
Kosatky, 2010; Kovats & Hajat, 2008).

This article assesses the vulnerability of Californians subsidized by major state and federal housing 
programs, comprising more than 12% of the state’s rental households, to extreme heat. Vulnerability 
depends on a person’s exposure, sensitivity, and adaptive capacity (IPCC, 2018). We employ a novel 
focus on subsidized housing because these dwellings both are home to more heat-sensitive 
populations and, for site-based subsidies, represent a durable indicator of where many of the state’s 
most economically insecure people will live in the future. Additionally, policymakers have legal 
authority to retrofit certain subsidized units and shape future siting decisions.

In this study, we answer two questions. First, do neighborhoods in California with more sub-
sidized housing demonstrate greater vulnerability to extreme heat than do neighborhoods with less 
unsubsidized housing, as measured by variation in residents’ exposure, sensitivity, and adaptive 
capacity? Second, which counties are home to the greatest numbers of vulnerable subsidized 
households?
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We compile and create a census-tract level data set of housing characteristics, maximum daily 
temperature projections, and adaptive capacity and sensitivity factors. We focus on major federal 
housing subsidy programs, including Section 8 Housing Choice Vouchers, public housing, and Low- 
Income Housing Tax Credits (LIHTC). These programs have different models: Housing Choice Vouchers 
are portable subsidies that a recipient can apply on the private market; public housing is publicly 
developed and operated; and LIHTC housing is privately developed but publicly subsidized through 
tax credits. We also include a newer state subsidy program called the Affordable Housing and 
Sustainable Communities (AHSC) Program. We estimate the number of extreme heat days—those 
above the 98th percentile of historical averages—by census tract between 2040 and 2049 based on 
four climate models using the Representative Concentration Pathway (RCP) 8.5 scenario. We create an 
adaptive capacity and sensitivity index (ACSI) using key characteristics identified in the literature. We 
then describe our data; identify bivariate correlations; map the intersection of subsidized housing, 
extreme heat, adaptive capacity, and sensitivity; and present results using linear regression models.

Our findings suggest opportunities for targeted policy interventions at the building and neigh-
borhood scales, including retrofitting the existing housing stock and building new subsidized 
housing that is more resilient to extreme heat. Neighborhood-scale interventions that increase 
urban greening and reduce impervious surfaces to moderate the urban heat island effect should 
also be considered both in California and throughout the U.S. Southwest.

Literature Review

A warming climate will lead to more extreme heat days and heat waves. By 2017, human-caused 
warming had increased temperatures by about 1°C above preindustrial levels globally, and tem-
peratures have risen by an average of 0.2°C per decade (IPCC, 2018). The numbers of high-heat days 
and heat waves in the United States have generally increased since 1979, despite variation based on 
location and how these terms are defined (Smith, Zaitchik, & Gohlke, 2013). Looking to the end of the 
century, the IPCC concluded that, globally, “it is virtually certain that there will be more frequent hot 
and fewer cold temperature extremes. . .. It is very likely that heat waves will occur with a higher 
frequency and longer duration” (IPCC, 2014, p. 10).

Rising temperatures present a serious and growing public health crisis, leading to morbidity and 
premature mortality. In the United States between 1999 and 2009, an average of 658 heat-related 
deaths occurred per year; this likely represents an underestimate as heat-related deaths are often 
attributed to other causes (Fowler et al., 2013; Luber & McGeehin, 2008). Some extreme heat waves 
have led to thousands of deaths, including heat waves in 1995 in Chicago, Illinois; 2003 in Europe; 
and 2010 in Russia (Lopez et al., 2018). Moreover, about 65,000 people are hospitalized annually in 
the United States for acute heat-related illness including heat stroke and heat exhaustion (U.S. EPA, & 
CDC, 2016). Heat-related mortality and morbidity will likely increase as temperatures rise, the 
population ages, and more people are impacted by the urban heat island effect because of growing 
urbanization, although improved public health planning and response holds the potential to some-
what mitigate this impact (Luber & McGeehin, 2008).

The existing literature includes a variety of extreme heat exposure measures, which reflect the 
intersection of populations and heat. Scholars have analyzed high temperatures using both absolute 
and relative measures (Smith et al., 2013; Ye et al., 2012). Absolute measures include daily high 
temperatures, daily minimum temperatures, daily mean temperatures, and maximum daily heat 
index (Hajat & Kosatky, 2010; Robinson, 2001; Smith et al., 2013). Relative measures include, for 
example, days above the 90th, 95th, or 99th percentile of summertime averages (Robinson, 2001; 
Smith et al., 2013). There is no consensus on the definition of a heat wave, and thus heat waves are 
variously defined as periods of two, three, or more consecutive days of high temperatures (Robinson, 
2001; Smith et al., 2013).

Several individual factors—including age, underlying chronic conditions, and living alone— 
increase sensitivity to extreme heat (Hajat, O’Connor, & Kosatsky, 2010; Klinenberg, 2002; 
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Knowlton et al., 2009; Kovats & Hajat, 2008; Semenza et al., 1996). Seniors’ bodies have more difficulty 
regulating heat because of changes to their thermoregulatory systems (Kovats & Hajat, 2008). Young 
children, too, are generally more sensitive to heat (Kovats & Hajat, 2008). Additionally, other 
preexisting health conditions, such as cardiovascular disease and diabetes, lead to greater risk of 
hospitalization or premature death (Kovats & Hajat, 2008). At the same time, individuals may become 
more acclimated to high temperatures, meaning the same temperatures may be more dangerous in 
places that are typically cooler or before people have adjusted to higher summertime temperatures 
(Hatvani-Kovacs, Bush, Sharifi, & Boland, 2018).

Some people are also better able to adapt to extreme heat than others because of characteristics 
of their built and socioeconomic environments (Reid et al., 2009; Rosenthal, Kinney, & Metzger, 2014; 
Uejio et al., 2011; Wilson & Chakraborty, 2018). The built environment affects adaptive capacity to 
extreme heat in a few ways. The most prominent example is through the availability of central AC, 
which is associated with better health outcomes (Hajat et al., 2010; Medina-Ramón & Schwartz, 2007; 
O’Neill, 2005; Reid et al., 2009; Semenza et al., 1996). However, central AC is expensive to operate, 
energy intensive, and often inaccessible, especially for people of color and low-income residents 
(O’Neill et al., 2003). Additionally, the urban heat island effect, which refers to the phenomenon of 
urban areas being hotter than their rural surroundings, hinders adaptation. Common mitigation 
measures include urban greening, parks, lighter colored paving and roofs, and turning off anthro-
pogenic heat sources, such as air conditioners (Bornstein, 1968; Rizwan, Dennis, & Chunho, 2008). But 
communities of color and poorer neighborhoods disproportionately suffer from extensive pavement 
and a lack of greenery and shade, which has been called “thermal inequity” (Mitchell & Chakraborty, 
2014, 2015). Lastly, there is limited evidence that urban air pollution acts as an exacerbating factor 
during extreme heat waves (Ye et al., 2012). Social and economic factors that affect an individual’s 
ability to adapt to extreme heat include financial resources, access to health care, nutrition and food 
access, and neighborhood-level social capital (Anderson & Bell, 2009; Semenza et al., 1996).

Vulnerability to extreme heat is a function of a person’s exposure, sensitivity, and adaptive 
capacity. The IPCC explains that vulnerability “encompasses a variety of concepts and elements 
including sensitivity or susceptibility to harm and lack of capacity to cope and adapt” (IPCC, 2018, 
p. 560). This conceptual framework underlies leading studies assessing vulnerability to extreme heat 
(Reid et al., 2009; Rosenthal et al., 2014; Uejio et al., 2011; Wilson & Chakraborty, 2018). That is, people 
are most vulnerable when they are exposed to high temperatures for sustained periods, are more 
sensitive to heat, and/or have less capacity to adapt to rising temperatures. Vulnerability encom-
passes both individual and community/place-level factors (Reid et al., 2009).

There is a growing scholarly and policy focus on variation in vulnerability to extreme heat, but 
there has been no analysis focused on residents of subsidized housing. Whereas the structural 
quality of U.S. subsidized housing stock itself is comparable with that of the general stock 
(Newman & Holupka, 2017), residents of these units have elevated sensitivity and adaptive capacity 
factors which potentially make them more vulnerable to high temperatures regardless of exposure. 
This is an important topic for both environmental justice scholars and policymakers because many 
subsidized households include vulnerable populations: seniors, people with preexisting health 
conditions, people of color, and people with lower and fixed incomes.

Data and Methods

Having outlined the need for additional research, we next describe our study data, including extreme 
heat, subsidized housing, and adaptive capacity and sensitivity measures, which are derived from 
different publicly available sources. We then describe our methods of overlaying and analyzing these 
data.

We first estimated extreme heat using downscaled climate projections. We focused on the four 
downscaled climate models chosen as the priority for California’s fourth climate assessment, which 
were HadGEM2-ES (warm/dry), CNRM-CM5 (cool/wet), CanESM2 (average), and MIROC5 (range of 
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outputs; State of California, 2019c). The state of California prepared data for two scenarios, RCP 4.5 
and RCP 8.5,1 for each of these four climate models (State of California, 2019c). These scenarios are 
the most commonly modeled and represent a range of possible futures, with RCP 4.5 as a moderate 
scenario and RCP 8.5 as a scenario with continued high emissions (State of California, 2015). In this 
article, we focus on the RCP 8.5 scenario. Although the RCP 8.5 reflects the high trend, the scenarios 
are relatively similar through the 2040s—the end period for our analysis—and diverge more 
considerably in the second half of the 21st century (IPCC, 2014).

We used these data to estimate high-heat days and identify high-heat tracts. High-heat days are 
days in which the high temperature exceeds the 98th percentile of historical averages for that 
specific location between April and October relative to the 1961–1990 period (State of California, 
2019b). For example, a high-heat day in Sacramento would be 103.9°F, whereas the threshold in San 
Francisco would be 87°F. We compiled estimates of these days by model and census tract calculated 
by California’s Cal-Adapt; the calculations are based on connecting census tract centroids with 
climate models downscaled to a grid of approximately 6 km x 6 km (Geospatial Innovation Facility, 
UC Berkeley, 2017; State of California, 2019b). These relative measures allow us to account for 
baseline adaptation and acclimatization in some of the hotter parts of the state. As a comparison 
between relative and absolute measures, we found a high correlation (corr = 0.83) between the 98th 
percentile extreme heat days in the 2040s and the number of days above 90 degrees in 2040. The 
number of high-heat days increases in practically every climate model and scenario, and although 
there is variation between models, the mean results under each scenario are comparable. We 
defined high-heat tracts as those in the top quartile of extreme heat days in the state.

We chose census tracts as our unit of analysis for several reasons. First, census tracts have been 
commonly used in the literature as a proxy for neighborhoods, particularly with respect to environ-
mental hazards, although they do not always align with residents’ perceptions of neighborhood 
boundaries (Coulton, 2012).2 Census tracts have an average of 4,000 residents each but vary in 
geographic size, from less than 0.4 square miles in urban San Francisco and Los Angeles to more than 
5 square miles in low-density and rural parts of the state (U.S. Census Bureau, 2013, 2019). The 
median census tract in California is about 0.7 square miles. Second, census tracts are the smallest 
geography for which most subsidized housing data are available. Third, local, state, and federal 
policymakers commonly use census tract data in their criteria for policies and programs. Examples 
include state allocations for LIHTC and the federal Opportunity Zone designations. However, one 
limitation with tract estimates from the American Community Survey is that the sampling approach 
produces high margins of error for many census tracts. Although most scholars and practitioners 
continue to use these estimates given the hollowing out of analyzable attributes from the decennial 
census, a potential conservative solution would be to exclude from the analysis tracts with 
a coefficient of variation above some threshold (Bazuin & Fraser, 2013; Folch, Arribas-Bel, 
Koschinsky, & Spielman, 2016).

We then collected and compiled data on major federal and state housing subsidy programs, 
along with unsubsidized housing. We first describe data on federal housing subsidies along with 
census data on unsubsidized housing. We incorporated 2017 U.S. Department of Housing and Urban 
Development (HUD) data for three main categories of federal subsidized housing programs: public 
housing, Section 8 Housing Choice Vouchers, and other project-based programs3 (U.S. Department 
of Housing and Urban Development, 2017). We also included LIHTC units by selecting active LIHTC 
properties in 2018 using the National Housing Preservation Database, and aggregating the unit 
counts to the census tract using the included census identifier (PAHRC & NLIHC, 2018). Data on 
unsubsidized housing, which we report by tenure and dwelling type, are from the 2013–2017 
American Community Survey (U.S. Census Bureau, 2017).

We included data on California’s AHSC Program. This state program supports subsidized housing 
developments that reduce greenhouse gas emissions; we included data from the program’s first 
three rounds, between 2014 and 2017 (State of California, 2019a). We geocoded the AHSC locations 
using the ggmap package in R and the Data Science Toolkit (Kahle, Wickham, Jackson, & Korpela, 
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2019). We then used the sf package in R to spatially join each AHSC location point with its underlying 
census tract (Pebesma, 2018).

All of these are site-based subsidy programs, with the exception of Housing Choice Vouchers. 
Housing Choice Vouchers, often referred to as Section 8 or simply vouchers, are portable subsidies 
that qualifying households can use on the private market to rent units that meet certain price and 
quality standards (Schwartz, 2010). The nature of affordable housing finance means that there are 
some overlaps between housing unit counts by subsidy, as subsidized housing units may receive 
several subsidies (U.S. Department of Housing and Urban Development, 2018).

We created a neighborhood-level Adaptive Capacity and Sensitivity Index based on models 
proposed by Reid et al. (2009) and Wilson and Chakraborty (2018). We chose 19 variables for the 
ACSI; these authors’ articles and data, available statewide, informed our variable selection. Most of 
these data were drawn from the 2013–2017 American Community Survey, by census tract (U.S. 
Census Bureau, 2017). Shares of land area with an impervious surface and without tree canopy were 
derived from the state’s CalBRACE public health and climate change initiative (State of California, 
2019d). We assigned each tract the share of its associated county’s households with central AC in 
2009—collected by the California Energy Commission and available through CalBRACE. The variables 
are summarized in Table 1.

We created a tract-level index using three steps: (a) a principal component analysis (PCA), (b) 
standardizing values for the major components, and (c) summing the scores. PCA is an increasingly 
common technique for creating indices related to socioeconomic status and vulnerability to climate 
hazards, including extreme heat (Bao, Li, & Yu, 2015; Reid et al., 2009; Vyas & Kumaranayake, 2006; 
Wolf & McGregor, 2013). The PCA reduced the number of variables in our analysis without losing 
most of the census tract-level information from the full data set (Jolliffe, 2011). We selected five 
components to use in our index based on three common criteria: how much variance they explained, 
the Kaiser–Guttman rule for eigenvalues above 1, and the scree plot test (Jolliffe, 2011). The five 
selected components explain almost 64% of the variance across the state’s tract-level data. Table 2 
summarizes the five components. We assigned each census tract an unstandardized value for each of 
the five components. We then standardized the tract values by converting to a z score, with a mean 
of 0 and a standard deviation (SD) of 1. We scored each tract based on the number of SDs from the 
mean value; tracts were scored as 1 (> 2 SD below the mean), 2 (1–2 SD below mean), 3 (0–1 SD 
below mean), 4 (0–1 SD above mean), 5 (1–2 SD above mean), or 6 (> 2 SD above mean). We added 
the scores across the five categories; the lowest possible score was 5 (if a tract scored 1 on all five 
principal components) and the highest possible score was 30 (if a tract scored 6 on all five principal 
components). We define high-ACSI tracts—those most challenged in terms of adaptive capacity and 
sensitivity—as ones in the top quartile of the index (see Table 3).

The overlap between the hottest tracts and those with the highest ACSI scores reflects particularly 
vulnerable tracts (see Table 3). We call these high-high tracts, representing tracts in the top quartile 

Table 1. Variables in the adaptive capacity and sensitivity index (ACSI).

Adaptive capacity (%) Sensitivity (%) Both adaptive capacity and sensitivity (%)

Median household income  
In group quarters  
With no high school diploma  
Female-headed households 

Poverty rate  
With no plumbing  
With no kitchen  
No car  
Renters  
Manufactured housing  
Impervious surface  
Without tree canopy  
Central air conditioning (county)

Population under 18 
Population over 65

Black 
Asian 
Other race 
Hispanic
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of both our extreme heat and our ACSI measures. About 7.7% of California’s tracts (620 of 8,051) are 
in the high-high category.

We used bivariate correlations to measures associations between housing, heat, adaptive capa-
city, and sensitivity. We estimated two sets of bivariate (Pearson) correlations using the psycho 
package in R (Makowski, 2018). The first set correlated tract-level housing counts by type with the 
tract’s modeled high-heat days in the 2040s. The second set correlated tract-level housing counts 
with three key built-environment factors that may improve or worsen residents’ abilities to adapt to 
extreme heat. These three built-environment factors were county-level percentage of households 
with AC, tract-level tree canopy coverage, and tract-level impervious surface.

For each bivariate association, we calculated the bivariate Moran’s I, a measure of global spatial 
autocorrelation (Anselin, 2019a). The bivariate Moran’s I measures the correlation of one variable 
with the spatial lag of a second variable (Anselin, 2019a). We used GeoDa software to first create 
a queen contiguity matrix, which relates each census tract to its neighbors that share common edges 
or vertices (Anselin, 2019b). We then applied GeoDa’s Bivariate Moran’s I function and report the 
spatial autocorrelation coefficient (Anselin, 2019a, 2019b).

We explored several data sets to explain the prevalence and type of available AC. This is important 
because our tract-level analysis does not measure the heat-protective quality or thermal properties 
of individual housing units, which mediate structure-based adaptive capacity to extreme heat. Along 
with the county-level Residential Appliance Saturation Study (RASS) maintained by the California 

Table 2. Variables with largest contributions to each component of the Adaptive Capacity and Sensitivity Index.

Component Variance explained (%) Variables with largest contribution to the component (%)

1 28.0 With no high school  
Hispanic  
Poverty rate  
Median household income  
Other race

2 13.4 No car 
With no kitchen  

Population under 18  
With no plumbing  
Impervious surface

3 9.3 Manufactured housing  
Impervious surface  
Asian  
Without tree canopy  
Population over 65

4 7.1 Black  
In group quarters  
With no plumbing  
With no kitchen  
Female-headed households

5 5.7 In group quarters  
Female-headed households  
population under 18  
Black  
Manufactured housing

Table 3. Summary of tract-level heat, adaptive capacity, and sensitivity terms.

Term Explanation

High-heat tracts Top quartile of tracts in terms of projected days in the 2040s above the 98th percentile of historical averages.
High-ACSI tracts Top quartile of tracts based on adaptive capacity and sensitivity index (ACSI); higher scores denote tracts 

with more challenges for adaptive capacity and sensitivity.
High-high tracts Tracts that are both high-heat and high-ACSI.
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Energy Commission, mentioned above, we explored two additional data sets to assess the heat- 
protective quality of different housing types: the Residential Energy Consumption Survey (RECS) 
maintained by the U.S. Energy Information Administration and the American Housing Survey main-
tained by the U.S. Census Bureau. Even these sources have their limitations; the latest (2015) RECS 
does not include any distinction in housing type which would be meaningful for a California-specific 
sample. Meanwhile, the RASS has not been updated since 2009 (a new version will be released in 
2020) and only contains AC data at the county level. The representative California sample of the 2017 
American Housing Survey is thus our best source, despite its limitation in terms of the lack of 
substate geographic identifiers.

Lastly, we conducted an exploratory analysis, using linear regression models, to further under-
stand relationships between extreme heat and subsidized housing. The literature described above 
suggests that other factors may mediate the vulnerability of subsidized residents to extreme heat. 
These factors include age, socioeconomic status, race and ethnicity, and neighborhood physical 
characteristics. The unit of analysis is the census tract and the dependent variable in our models is 
the average annual number of extreme heat days in 2040, which we log transform. The primary 
independent variable of interest in each model is the number of subsidized housing units by type. 
Other independent variables include percentage of residents under 18 years of age, percentage 
above 65 years of age, percentage black, percentage Hispanic, percentage below the poverty line, 
percentage tree canopy, and percentage impervious surface. We specify ordinary least squares (OLS) 
models using county fixed effects to control for unobservable factors, in the form of Equation (1). We 
tested for multicollinearity by estimating the variance inflation factor for each independent variable 
in the model. All variables had variance inflation factor scores between 1.2 and 2.2—with a mean of 
1.7—indicating limited cause for concern about multicollinearity.

ExtremeHeatDaysi = ɑ + β1SubsidizedUnitsi + β2PopulationCharacteristicsi + 
β3NeighborhoodCharacteristicsi + εi(1)

Given the possibility of spatial autocorrelation, we use Moran’s I to test for spatial autocorrelation 
in the residuals of our model. The Moran’s I values are above 0.8, indicating strong spatial auto-
correlation. As such, we specify maximum likelihood spatial lag models to account for spatial 
dependence. A spatial lag model is appropriate if the values of the dependent variable for nearby 
observations are related to each other (Anselin, 2005). In this case, the projected numbers of extreme 
heat days for neighboring census tracts are generally highly correlated. We use the R package spdep 
to calculate a queen contiguity matrix and estimate the spatial lag models (Bivand & Wong, 2018).

Results

California has a diverse housing stock, with about 6% of units subsidized through major federal and/ 
or state programs. Table 4 summarizes California’s occupied housing stock and major housing 
subsidy programs. The largest form of subsidized housing is Housing Choice Vouchers, which can 
be applied on the private market and are not associated with specific site-based housing units. The 
most sizable supply-side type of subsidized housing is LIHTC.

Tracts with the most extreme heat days in the 2040s—defined as the state’s top quartile of tracts 
—tend to be inland and farther south. These tracts average 25.7 annual extreme heat days, 
compared with 14.5 for the entire state.4 These include many lower density urban, suburban, and 
rural parts of California, including the Central Valley and the Inland Empire east of Los Angeles. These 
tracts disproportionately include detached and manufactured housing. In contrast, most or all of the 
major coastal cities, including Los Angeles, San Diego, San Jose, and San Francisco, fall outside of the 
top quartile zone. Because the bulk of subsidized housing is in these coastal population centers, the 
hottest tracts in California include somewhat smaller shares of most subsidized types: 22% of public 
housing units, 20% of vouchers, 17% of other HUD program units, and 22% of AHSC. At the same 
time, these tracts include a slightly higher share (26%) of LIHTC units.
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Individuals have a harder time responding to extreme heat if they have poor adaptive capacity 
and/or are more heat sensitive. Our ACSI measures tract adaptation barriers and sensitivity. The tract 
index scores ranged from 12 to 27. Unsurprisingly, we see a disproportionate number of rental units 
in tracts with the highest ACSI scores. Among unsubsidized types, detached single-family housing is 
least likely (20%) to be in the top ACSI quartile, whereas manufactured housing (34%) and other 
housing types including recreational vehicles and boats (36%) intersect most with this quartile. All 
subsidized housing types are disproportionately located in high-ACSI tracts, most commonly public 
housing and AHSC housing. Still, 42% of vouchers and 47% of LIHTC units are in the most challenged 
tracts in terms of ACSI.

We then identified high-high tracts: those that are in the top quartile of both extreme heat and 
ACSI. These 620 tracts reflect the intersection of neighborhood-scale extreme heat, low adaptive 
capacity, and high heat sensitivity. Although 8% of California’s housing units fall into these tracts, 
these tracts are home to 17% of the state’s manufactured housing, 16% of its public housing, and 
14% of its LIHTC units. The other housing subsidy programs are also above the state average of 8%. 
These subsidized units are an important focus because they include tens of thousands of California 
households that will be most vulnerable to rising temperatures.

Tract-level counts of most types of subsidized housing are not correlated or are negatively 
correlated with extreme heat (see Table 5). Owner-occupied housing, detached housing, manufac-
tured housing, and other precarious housing types (e.g., boats, vans) are positively correlated with 
high-heat days. Renter-occupied and attached housing counts are negatively correlated with the 
propensity of high-heat days. Subsidized housing types either are negatively correlated with high- 
heat days or display no significant associations. Vouchers and other HUD housing types are 
negatively correlated with high-heat days, whereas there are no significant associations between 
public housing, LIHTC, and California’s AHSC units and high-heat days. The coefficients are nearly the 
same for the bivariate correlations and the Moran’s I, indicating that spatial autocorrelation is 
a limited factor in these relationships.

Table 4. Housing units, by type, in the top quartile of heat, adaptive capacity and sensitivity index, and combined measure.

Housing type Total units

% of units in 
high-heat tracts 
(25% of CA 

tracts)

% of units in 
high-ACSI tracts 

(25% of CA 
tracts)

% of units in 
high-high tracts 

(7.7% of CA 
tracts)

All 
occupied 
housing

Occupied housing units 12,888,128 25 24 8

Owner occupied 7,024,315 28 18 7
Renter occupied 5,863,813 22 31 8

Detached 7,543,682 31 20 8
Attached 4,886,034 14 31 6
Manufactured housing 443,564 43 34 17
Other housing 14,848 38 36 15

Subsidized 
housinga

Public housing 28,786 22 69 16

Housing Choice Voucher 330,938 20 42 10
Other HUD housing 119,126 17 53 10
Low-Income Housing Tax Credit 267,358 26 47 14
California Affordable Housing and 

Sustainable Communities
6,186 22 58 14

aThere may be some double counting if Housing Choice Voucher households use their voucher in a unit that received another 
subsidy, or if AHSC projects also receive another type of subsidy.
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Meanwhile, tract-level counts of lower cost housing types are associated with lower neighbor-
hood adaptive capacity and increased sensitivity (see Table 5). Higher ACSI scores mean that 
a neighborhood is more vulnerable to extreme heat. Owner-occupied and detached single-family 
housing are negatively associated with the ACSI scores. Rental housing, multifamily housing, 
manufactured housing, and subsidized housing are positively associated with higher ACSI scores; 
LIHTC, all rental housing, and vouchers have the largest coefficients. The bivariate Moran’s 
I coefficients show some spatial autocorrelation between most housing types and ACSI variables.

A county-level analysis allows us to better identify places most suitable for municipal and/or 
county policy interventions. Counties with neighborhoods where subsidized housing and extreme 
heat overlap the most are located in the Central Valley and the Inland Empire (see Table 6 and Figure 
1). In these counties—particularly Fresno, Riverside, and San Bernardino—most (or all) of the 
subsidized housing is in high-heat tracts.

The same general trends hold when looking at each type of subsidized housing. Fresno, Kern, 
Imperial, Tulare, and San Bernardino counties each contain over 600 public housing units in high- 
heat tracts. Nearly 20% of California’s high-heat tract voucher holders live in Fresno County, followed 

Table 5. Bivariate correlations and bivariate Moran’s I between housing type and extreme heat days, and between housing type 
and the adaptive capacity and sensitivity index (ACSI).

High-heat days ACSI

Housing type
Bivariate 

correlation
Bivariate 
Moran’s I

Bivariate 
correlation

Bivariate 
Moran’s I

All housing Occupied housing units 0.00 − 0.007 − 0.03 − 0.082

Owner occupied 0.16*** 0.167 − 0.29*** − 0.214
Renter occupied − 0.18*** − 0.191 0.28*** 0.118

Detached 0.28*** 0.282 − 0.24*** − 0.146
Attached − 0.33*** − 0.34 0.18*** 0.042
Manufactured housing 0.19*** 0.215 0.1*** 0.037
Other housing 0.08*** 0.084 0.06*** 0.032

Subsidized 
housing

Public housing − 0.01 − 0.017 0.14*** 0.052
Housing Choice Voucher − 0.15*** − 0.162 0.31*** 0.178
Other HUD housing − 0.08*** − 0.085 0.24*** 0.126
Low-Income Housing Tax Credit − 0.01 − 0.016 0.27*** 0.123
California Affordable Housing and 

Sustainable Communities
− 0.03 − 0.024 0.11*** 0.078

*p < .05. **p < .01. ***p < .001.

Table 6. Counties with the most subsidized housing units in high-heat tracts.

County
Public 

housing

Housing 
Choice 

Voucher

Other 
HUD 

housing

Low-Income 
Housing Tax 

Credit

California Affordable 
Housing and Sustainable 

Communities

Total sub-
sidized 
unitsa

% of county’s 
subsidized 

units

Fresno 1,026 12,656 3,194 8,840 271 25,987 100
Riverside — 7,883 2,509 10,777 138 21,307 81
San Bernardino 656 7,650 2,937 5,235 148 16,626 73
Los Angeles 139 7,782 2,797 4,911 — 15,629 8
Kern 738 3,401 1,058 6,449 222 11,868 89
Sacramento 352 3,680 816 6,877 — 11,725 31
Tulare 676 2,855 608 3,117 157 7,413 100
Imperial 732 1,942 409 2,708 — 5,791 100
San Joaquin 356 3,418 673 1,132 72 5,651 55
Merced 420 2,750 330 1,761 — 5,261 100
All other 

counties
1,271 11,195 4,626 17,478 333 34,903 9

Total 6,366 65,212 19,957 69,285 1,341 162,161 22
aThere may be some double counting if Housing Choice Voucher households use their voucher in a unit that received another 

subsidy.
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by Riverside, Los Angeles, and San Bernardino counties. Over 15% of the state’s hottest LIHTC units 
are in Riverside County, followed by 13% in Fresno, 10% in Sacramento, and 9% in Kern counties. The 
most AHSC units are in the urban San Joaquin Valley counties (Fresno, Kern, Tulare, and San Joaquin) 
or the Inland Empire counties (San Bernardino and Riverside).

The results for high-high tracts are similar to those for high-heat tracts (see Table 7 and Figure 2). 
Neighborhoods’ subsidized housing, high-heat, sensitive populations, and barriers to adaptation 
overlap in the Central Valley and Inland Empire. The most high-high subsidized housing units are in 
the Central Valley counties of Fresno, Kern, Tulare, and Sacramento, and the Inland Empire counties 
of San Bernardino and Riverside. More than 20% of the state’s high-high subsidized housing is in 

Figure 1. Number of subsidized housing units in high-heat tracts, by county.

10 C. J. GABBE AND G. PIERCE



Fresno County, and these units comprise 71% of the county’s subsidized stock. High-high housing 
also makes up the majority of the subsidized housing stock in Kern, Tulare, Merced, and Butte 
counties. The breakdown for individual subsidized housing types largely aligns with these broader 
trends.

We also explored relationships between housing types and built-environment factors that affect 
adaptive capacity, and influence local, state, and/or federal governments (see Table 8). The sub-
sidized housing types all tend to be negatively associated with county AC adoption, indicating that 
these housing units are more likely to be located in parts of the state with less AC.

Household-level data from the 2017 American Housing Survey point to several housing types with 
lower AC prevalence in California. Site-based public housing, and to a lesser extent multifamily 
subsidized housing, has much lower prevalence of any type of AC and of central AC than the general 
housing stock and compared with all households with similarly low income levels in units not 
subsidized through supply-side programs. Site-based public housing also has a much higher preva-
lence of inadequate insulation than the general housing stock does. On the other hand, mobile homes 
and voucher recipients have similar, albeit slightly lower, levels of AC and insulation compared with the 
general housing stock.5 We lack data to assess building characteristics such as glazing, ventilation, and 
thermal mass, which are also important factors that affect indoor temperatures.

Three subsidized housing types—Housing Choice Vouchers, LIHTC, and other HUD housing—are 
also negatively associated with tree canopy, as are rental and attached housing in general. Owner- 
occupied, detached single-family, and manufactured housing are all associated with more tree 
canopy. The associations with tree canopy are largely consistent with those for impervious surface. 
In the next section, we describe opportunities for cities and counties to reverse these disparities.

The regression results show little specific correlation between subsidized housing and extreme 
heat after controlling for other correlates of extreme heat (see Table 9). We show only the three 
largest housing categories in Table 9, but the results are consistent across housing categories. In the 
OLS models, the only significant associations between housing types and extreme heat are small 
negative associations for public housing (not shown) and Housing Choice Vouchers (see Table 9, 
Model 3). Once we account for spatial autocorrelation using the spatial lag models, we no longer 
observe any significant associations between housing and extreme heat. Several neighborhood 
characteristics are associated with hotter days in the OLS models, but most of these associations 
disappear in the spatial lag models. The exceptions are tree canopy and impervious surface, which 
are both negatively associated with extreme heat across models.

The negative relationship between impervious surface and extreme heat may seem counter-
intuitive but is explained by the scale of the analysis. Within a city, impervious surface is associated 

Table 7. Counties with the most subsidized housing units in high-high tracts.

County
Public 

housing

Housing 
Choice 

Voucher

Other 
HUD 

housing

Low-Income 
Housing Tax 

Credit

California Affordable 
Housing and Sustainable 

Communities

Total sub-
sidized 
unitsa

% of county’s 
subsidized 

units

Fresno 798 8,399 2,569 6,366 271 18,403 71
San Bernardino 615 4,407 1,925 4,051 148 11,146 49
Riverside — 2,684 1,005 3,946 138 7,773 29
Kern 404 2,401 797 3,672 63 7,337 55
Tulare 475 1,897 361 2,225 92 5,050 68
Sacramento 180 1,468 457 2,939 — 5,044 13
San Joaquin 356 2,153 744 1,465 123 4,841 47
Los Angeles — 1,683 1,095 1,732 — 4,510 2
Merced 302 1,777 327 1,166 — 3,572 68
Butte 266 1,366 450 1,224 — 3,306 68
All other 

counties
1,340 5,270 2,695 7,685 61 17,051 4

Total 4,736 33,505 12,425 36,471 896 88,033 12
aThere may be some double counting if Housing Choice Voucher households use their voucher in a unit that received another 

subsidy.
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with urban heat islands. On a statewide basis, however, impervious surface is a proxy for urbaniza-
tion, and much of California’s urbanization is in the state’s relatively cooler coastal metropolitan 
areas. This may change over time, however, as high housing prices in coastal counties push house-
holds to less expensive inland areas.

Discussion

We have two main findings. First, a disproportionate share of low-income, subsidized Californians 
live in neighborhoods with simultaneously more heat, more sensitive populations, and higher 

Figure 2. Number of subsidized housing units in high-high tracts, by county.
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barriers to adaptation. These units are predominantly located in the Central Valley and Inland Empire 
in California. Second, subsidized housing is located in neighborhoods with fewer trees and more 
impervious surfaces relative to the overall housing stock, motivating our focus on these 
interventions.

Although subsidized housing is somewhat less prevalent in hotter areas, many California house-
holds live in the hottest areas, and subsidized households disproportionately live in high-high tracts. 
The top quartile of high-heat census tracts contains more than 160,000 subsidized housing units. As 
temperatures rise, the hundreds of thousands of residents in these housing units, predominantly in 
the Central Valley and Inland Empire, will experience historically extreme temperatures. Many or 
most, depending on the program, subsidized housing units are located in neighborhoods with 
sensitive populations and limited adaptive capacity. These neighborhoods include people with 
lower incomes, people of color, children, and seniors, as well as fewer trees and more pavement. 
There may be unique opportunities to make LIHTC units more resilient to high temperatures given 
that LIHTC is the largest supply-side subsidized housing program, and about 14% of California’s 
LIHTC units are in high-high tracts.

Manufactured housing faces a nexus of heat exposure, high sensitivity, and low adaptive capacity. 
Manufactured housing is the most prevalent type of unsubsidized low-cost housing, with 43% of 
manufactured housing units in high-heat tracts and 17% in high-high tracts. This is troubling given 
research regarding residents’ economic status and mobility patterns, and manufactured housing 
quality characteristics. Whereas residents of manufactured housing tend to be poorer than the 
typical renter, they are also less likely to move and have better perceptions of the quality of their 
housing units and neighborhoods (Boehm & Schlottmann, 2006, 2008). Manufactured housing has 
also historically been more prone to utility shutoffs (Pierce & Jimenez, 2015) and has been much less 
energy efficient than conventional housing, although this gap has narrowed over time (Wilson, 
2012). We need to better understand the thermal performance of manufactured housing in the U.S. 
Southwest, along with residents’ exposure and sensitivity to heat and other climate hazards; these 
topics merit detailed, focused research.

High-high census tracts contain a diversity of subsidized housing developments and mobile 
home parks (MHPs), as illustrated by Fresno County, which has the most subsidized housing units 
in high-high tracts of anywhere in the state. In particular, there are nearly 6,400 LIHTC units and over 
4,100 manufactured housing units in the county’s high-high tracts—of which about 2,300 are in 
MHPs. The LIHTC developments vary in size, age, and resident profile. Developments contain from 

Table 8. Bivariate correlations between housing types, and built-environment factors that support or inhibit adaptation to 
extreme heat.

Housing type
County AC 

(%)
Tree canopy 

(%)
Impervious surface 

(%)

All housing Occupied housing units − 0.02 0.04 − 0.05**

Owner occupied 0.06*** 0.19*** − 0.42***
Renter occupied − 0.09*** − 0.16*** 0.38***

Detached 0.16*** 0.17*** − 0.44***
Attached − 0.21*** − 0.15*** 0.44***
Manufactured housing 0.10*** 0.06*** − 0.24***
Other housing 0.03 0.06*** − 0.10***

Subsidized 
housing

Public housing 0 − 0.02 0.04
Housing Choice Voucher − 0.11*** − 0.15*** 0.30***
Other HUD housing − 0.07*** − 0.05* 0.17***
Low-Income Housing Tax Credit 0.00 − 0.08*** 0.12***
California Affordable Housing and Sustainable 

Communities
− 0.03 − 0.03 0.07***

*p < .05. **p < .01. ***p < .001.
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less than a dozen to more than 400 housing units, and some date from the beginning of the program 
in the 1980s whereas others were completed after 2010. The MHPs in Fresno County also range 
dramatically in size from 3 to more than 300 lots, with a median of 51 lots. Contrasting with LIHTC 
housing in high-high tracts, the county’s MHPs are long established, with many predating 1960. This 
diversity illustrates the necessity for subsequent project-level analyses and tailored policy 
approaches.

Opportunities exist for city- and county-level interventions that expand the tree canopy and 
reduce impervious surfaces. Local governments can prioritize urban forestry initiatives in places with 
sizable low-income populations. Cities can limit the amount of space devoted to parking, and 
encourage reflective roofs and paving, green roofs, and permeable paving. A natural place to expand 
these interventions is in cities with the most subsidized housing in high-high neighborhoods, 
including the cities of Fresno, San Bernardino, Riverside and Bakersfield.

State and federal programs could retrofit existing housing and mitigate extreme heat in new 
subsidized developments. California’s AHSC program could be a model for incorporating climate 
considerations into subsidized housing. The AHSC program is funded through revenue from the 
state’s cap-and-trade program and funds housing developments and other projects that reduce 
greenhouse gas emissions (State of California, 2019a). The program provides incentives for 

Table 9. Ordinary least squares (OLS) and spatial lag regression results for log of extreme heat days in the 2040s (selected housing 
types).

Model

(1) (2) (3) (4) (5) (6)

Housing type OLS Spatial lag OLS Spatial lag OLS Spatial lag

Renter occupied 0.00000 0.00000
− 0.00001 0.00000

Housing Choice 
Voucher

− 0.001*** − 0.00001

− 0.0001 − 0.00001
Low-Income 

Housing Tax 
Credit

0.0001 0.00000

− 0.0001 − 0.00001
Population per sq. 

mi.
− 0.00001*** 0.00000 − 0.00001*** 0.00000 − 0.00001*** 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
% population 

under 18
1.113*** 0.015 1.182*** 0.02 1.106*** 0.019

− 0.099 − 0.014 − 0.098 − 0.014 − 0.098 − 0.014
% population over 

65
0.143 − 0.013 0.165* − 0.007 0.144 − 0.007

− 0.083 − 0.012 − 0.081 − 0.012 − 0.081 − 0.012
% black − 0.879*** − 0.001 − 0.757*** 0.002 − 0.884*** − 0.001

− 0.06 − 0.009 − 0.063 − 0.009 − 0.06 − 0.009
% Hispanic − 0.003 0.001 − 0.011 0.003 0.002 0.003

− 0.028 − 0.004 − 0.028 − 0.004 − 0.028 − 0.004
Poverty rate 0.959*** 0.004 1.049*** 0.002 0.933*** 0.0003

− 0.056 − 0.008 − 0.056 − 0.008 − 0.055 − 0.008
% tree canopy − 1.024*** − 0.023** − 1.010*** − 0.023** − 1.020*** − 0.023**

− 0.058 − 0.008 − 0.057 − 0.008 − 0.057 − 0.008
% impervious 

surface
− 1.168*** − 0.029*** − 1.134*** − 0.029*** − 1.171*** − 0.030***

− 0.032 − 0.005 − 0.032 − 0.005 − 0.032 − 0.005
No. observations 7,991 7,991 7,991 7,991 7,991 7,991
Adjusted R2 0.376 0.38 0.376
Log likelihood 9,171.40 9,170.06 9,169.55
Akaike information 

criterion
− 18,318.79 − 18,316.12 − 18,315.10

*p < .05. **p < .01. ***p < .001.
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mitigation and adaptation to climate change, including extreme heat. Scoring criteria include GHG 
efficiency, green buildings and renewable energy, urban greening, community climate resiliency,6 

and community air pollution exposure mitigation (California Strategic Growth Council, 2019).
Our article has several limitations that point to opportunities for future research. First, we lack 

data on the demographics of subsidized households or the characteristics of subsidized units. 
Household-level characteristics would allow us to identify individuals in subsidized housing at 
particular risk because of age, health, and/or socioeconomic status. Second, the Housing Choice 
Voucher Program is the largest portable subsidy, but it is unknown how voucher households account 
for temperature in making their housing decisions, such as moving to cooler parts of a metro area, or 
choosing a unit with AC or on a shady lot.7 Third, we lack data to assess structure-based adaptive 
capacity including AC availability or whether utility shutoff prevalence is higher in certain housing 
types (see Pierce & Jimenez, 2015), which may affect vulnerability to extreme heat events. Fourth, our 
98th percentile heat measure does not capture likely variation in the relationship between tempera-
ture and mortality (see Anderson & Bell, 2009; Armstrong et al., 2011), which should be incorporated 
into future studies. Lastly, whereas subsidized housing itself was not statistically associated with 
extreme heat in the regression models, subsidized housing remains important because policymakers 
have the most influence over subsidized housing locations and attributes. Beyond subsidized 
housing, there is a broad need to address low-income households’ energy insecurity and locations 
in neighborhoods with fewer trees and more impervious surfaces.

Conclusions

This study compared the vulnerability of different subsidized and unsubsidized housing groups in 
California to extreme heat. We found that neighborhoods with more subsidized housing have 
greater vulnerability—referring to the intersection of exposure, sensitivity, and reduced adaptive 
capacity—to extreme heat than other kinds of neighborhoods do. Public housing and LIHTC units 
are particularly likely to be in high-heat neighborhoods and/or neighborhoods with limited 
adaptive capacity and higher sensitivity. Extreme heat risk is not evenly distributed across housing 
types and locations in California. Vulnerable subsidized households are clustered in certain cities 
and counties, particularly in the Central Valley and the eastern parts of Southern California’s Inland 
Empire.

These findings point to opportunities for further research and policy intervention. Scholars need 
to continue building an evidence base around evolving climate justice issues, which includes 
identifying disparities in vulnerability and high-risk populations. This scholarship must be interdisci-
plinary, bringing together scholars from climate science to urban planning, and public health to 
economics. Meanwhile, climate adaptation must be incorporated into policies and programs that 
serve seniors, children, people with lower incomes, people of color, and people living with chronic 
illness. California’s AHSC program—which encourages subsidized housing developers to incorporate 
green features, reduce impervious surface, improve energy efficiency and reduce energy costs, and 
incorporate cooling centers—could serve as a model for larger state and federal subsidy programs. It 
will be crucial to design housing that accounts for extreme heat as temperatures rise, populations 
age, and cities grow.

Notes

1. RCP refers to Representative Concentration Pathways, which are scenarios about the future emissions, concen-
trations, and land-use change, that serve as inputs to climate models (Van Vuuren et al., 2011). The four RCPs are 
based on radiative forcing in 2100, referring to 2.6, 4.5, 6, and 8.5 W/m2 (Van Vuuren et al., 2011). We can broadly 
think of RCP 2.6 as a low emissions scenario, RCPs 4.5 and 6 as intermediate emissions scenarios, and RCP 8.5 as 
a high or business-as-usual scenario (IPCC, 2014; Van Vuuren et al., 2011).

2. Additionally, the neighborhood characteristics of two adjacent census tract edges may be more similar than are 
distant locations within the same tract.
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3. Other project-based programs are Section 8 moderate rehabilitation, Section 8 project-based rental assistance, 
rent supplement, rental assistance payment, Section 236, Section 202 for the elderly, and Section 811 for persons 
with disabilities.

4. Although these extreme heat days are calculated based on 98th percentile temperatures for the specific 
location, they are highly correlated with extreme heat days calculated based on a temperature threshold (e.g., 
90°F).

5. More broadly, across the United States, differences across housing types are noticeable in terms of central AC 
and insulation, but not for general prevalence of AC. The national RECS estimates on AC are similar to those from 
the national American Housing Survey, which give us confidence about using the American Housing Survey 
estimates for more detailed housing types in California.

6. The community climate resiliency points include a climate adaptation assessment matrix with risks including 
heat waves, wildfires, and sea level rise. The matrix for extreme heat asks the proposers to characterize the 
degree to which they are planting trees, providing shade, enhancing insultation, installing cool roofs, reducing 
electricity demand and cooling costs, and adding permeable land cover. Proposers must also assess the degree 
to which they replace natural land cover with impervious surfaces (California Strategic Growth Council, 2019).

7. Given Goetz and Chapple’s (2010) observation that mobility decisions are often less a result of preferences than 
of problem-solving in an environment with time constraints and limited housing availability, it seems likely that 
extreme heat may be a minor consideration for voucher households.
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